skip to main content


Search for: All records

Creators/Authors contains: "Donovan, Eric F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report the first observations of the association between equatorward extending streamers and overshielding using the THEMIS all‐sky imagers and ground magnetometers. Because auroral streamers indicate plasma sheet flow bursts, these observations uncover the effect of flow bursts on overshielding. Results show that, in general, bright equatorward extended streamers were associated with an increase in equatorial electrojet (EEJ) on the nightside and a decrease in the dayside EEJ, indicating a striking correspondence between auroral streamers and overshielding conditions. Thus, the driving of overshielding at equatorial latitudes can be identified via bright equatorward extended streamers, indicating that flow bursts are an alternate means to discern the earthward injections that increase the region 2 field aligned currents and associated overshielding electric fields. Repetitive auroral streamers were associated with repetitive overshielding, resulting in a stepwise development of the dayside and nightside EEJ. The stepwise intensifications were also observed in the midlatitude positive bay and Pi2 pulsations. Our results could explain the occurrence of overshielding conditions at equatorial latitudes during substorms and nonsubstorm times without a northward turning of IMF‐Bz. As seen through streamers, the localized current structures (wedgelets) associated with flow bursts giving injection that leads to overshielding is titled northeast‐to‐southwest. Our results add a new element to the understanding of high‐to‐low latitude electrodynamical coupling by demonstrating the association between bright equatorward extended auroral streamers and enhanced shielding electric fields caused by earthward injections associated with flow bursts.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    Auroral observations were first to identify the substorm, and later used to propose that substorm onset is triggered in the inner plasma sheet (equatorward portion of the auroral oval) by an intrusion of low entropy plasma comprising plasma sheet flow channels. Longitudinal localization makes the intruding flow channels difficult to observe with spacecraft. However, they are detectable in the ionosphere via the broader, two‐dimensional coverage by radars. Line‐of‐sight radar flow measurements have provided considerable support for the onset proposal. Here we use two‐dimensional, ionospheric flow maps for further testing. Since these maps are derived without the smoothing from global fits typically used for global convection maps, their spatial resolution is significantly improved, allowing representation of localized spatial structures. These maps show channels of enhanced ionospheric flow intruding to the time and location of substorm onset. We also see evidence that these intruding flows enter the plasma sheet from the polar cap, and that azimuthal spread of the reduced entropy plasma in the inner plasma sheet contributes to azimuthal onset spreading after initial onset. Identified events with appropriate radar data remain limited, but we have found no exceptions to consistency with flow channel triggering. Thus, these analyses strongly support the proposal that substorm onset is due to the intrusion of new plasma to the onset region. The lower entropy of the new plasma likely changes the entropy distribution of inner plasma sheet, a change possibly important for the substorm onset instability seen via the growing waves that demarcate substorm auroral onset.

     
    more » « less
  5. Abstract

    Although triggering mechanisms for substorm onsets remain highly controversial, consensus has reached that violation of frozen‐in flux condition in the central plasma sheet is required. In this study, we carry out a numerical gedanken experiment to investigate the effects of the violation by assuming ions slip with respect to the magnetic field lines in the late substorm growth phase while electrons remain magnetized, without specifying the microphysics. The simulation results predict (1) a thin arc and a strong westward electrojet associated with downward‐upward‐downward field‐aligned currents and westward‐eastward‐westward horizontal flows in the ionosphere, which are found to be consistent with a preonset arc observed by the Swarm and the all‐sky imager; (2) a rapid creation of a bubble‐blob pair in the plasma sheet with a tailward hump ofBzthat may lead to tearing instability.

     
    more » « less